- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
Let $A = \left[ {\begin{array}{*{20}{c}}
p&{13}\\
{ - 13}&p
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
{4q}&{85}\\
{ - 2}&1
\end{array}} \right]$ where $p,q \in N$. It is given that $\left| A \right| = \left| B \right|$ and $p,q \in[1,1000]$. Then total number of ordered pairs $(p,q)$ is
A
$31$
B
$35$
C
$41$
D
$23$
Solution
$p^{2}+169=4 q+170$
$p^{2}=4 q+1$
Let $\mathrm{p}=(2 \mathrm{k}+1) \Rightarrow \mathrm{q}=\mathrm{k}(\mathrm{k}+1)$
$1 \leq k(k+1) \leq 1000$
Number of possible values are $31 .$
Standard 12
Mathematics